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Abstract—A full-wave electromagnetic technique is developed to the generalized guiding structure, e.g., microstrip, finline,
for the rapid and accurate calculation of dispersion characteristics coplanar waveguide (CPW), etc, requires repetitive numerical

in multiconductor qnd multilayer planar transmission lines. The _solutions of a boundary value problem at successive frequency
proposed method is based on the Mrozowski and Przybyszewski i This is necessary for the calculation of both the fun-

algorithms. This powerful method calculates an approximate value ) . .
of propagation constant at a desired frequency based on more ac- 9@mental and higher modes. Moreover, the study of higher

curate computations of the field distribution and propagation con- modes is closely related to problems of discontinuity. This, in
stant at a few selected frequency points. Comparison with previ- turn, requires an adequate selection of modes to obtain rapid
ously accurate published data and numerical tests are first per- convergence, avoiding overflow problems and minimizing
formed to confirm the accuracy of our procedure. Numerical re- - Cpy time. With a high computational cost for each solution, a
sults for several configurations are presented. lengthy overall time is needed to complete the computation for
Index Terms—Eigenvalue problems, full-wave analysis, planar all points of interest. Several authors have recently suggested
transmission lines. different approaches to overcome this problem [7]-[9]. In this
paper, we have implemented a new technique based on the
I. INTRODUCTION work recently developgd by Przy'byszewski gl. [9], which .
) has been successful in dispersion analysis of waveguides.
D ETERMINING the normal modes of propagation of arhe method calculates an approximate value of propagation
guiding structure is known to be of fundamental imporeonstant at a desired frequency based on more accurate com-
tance. Due to the completeness of the set of normal modes Fitations of the field distribution and propagation constant at
an arbitrary electromagnetic field inside the guiding structuggfew selected frequency points. The principal idea of the new
can be expanded within this set. Moreover, the analysis &lborithms proposed by Mrozowski [7] and Przybyszeweski
discontinuities between planar transmission lines, such gs [9] is to calculate a frequency independent optimal set of
finline and microstrip configurations, has received increasirgggenfunction& which satisfy all boundary conditions in large
interest. Rigorous theoretical investigations of discontinuitigggndwidths. Although this stage of the process is performed
by modal analysis have been reported by several authgffly once, the choice and efficiency of the numerical technique
(e.9., [2]-[4]) and a transverse resonance method based @@d is of considerable importance as it may also be useful
an impedance matrix formulation was reported (e.g., [Sk the second stage of the process, depending on the type of
determining high-order modes is not needed for this approaghethod developed. The second stage involves expressing the
The first approach method of analysis depends on the mogalds at any frequency as a superposition of a small number
expansion concept. It is an application of the method @k syitable eigenfunctions obtained in the first stage of the
moments, in which both the basis and testing functions gigycess. Finally, the method of moments can be used to find
the electromagnetic fields of the normal modes of propagatigRpansion coefficients. In the frequency domain, it involves
at both sides of the discontinuity. The main problem in thisolving a small system of linear equations. In this work, both
technique is the accurate determination_of an approximate_mé spectral-domain approach (SDA) [10] method and the
complete set of modes. Usually the weight of the mode ijngular value decomposition (SVD) [11] technique have
a field expansion series becomes smaller as the mode orggén implemented to obtain an accurate set of modes. The
goes higher so that determining of the first, sa§, modes gimultaneous use of these two techniques (SDA and SVD) [12]
is the actual need [6]. Therefore, one of the basic aims gffers the possibility of finding all the eigenmodes of any type
computational electromagnetic is the calculation of dispersigh muiticonductor and multilayer planar transmission lines.
characteristics of planar transmission lines. In fact, the designgkewise, these techniques are used to find the approximate
passive and active components, which are of utmostimportanggues applying the new fast method. The proposed technique
in the realization of integral microwave circuits, wide-ban@ias peen incorporated into the analysis of microstrip transmis-
characterization of any one of the configurations belonginggn lines and finline waveguides with great success.
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¥ In this way, oncelV_discrete points have been obtained so that
at eacﬁhui, B;,andD; as a function of;, andg;, i =1,..., N,
eachD); satisfies the following equation:

&7 v v ) s LD; +wD; — g2SD; = o. (5)

At other frequencies, to approach the solution using a superpo-
sition process

N

X D(w,B) =" eiDi(wi, ) (6)

=1

4
wherec; is a function ofw and 3. Substituting (6) into (4) and

Fig. 1. Cross-sectional view of general multilayer and multiconduct(gimultaneously adding and subtract@caﬂD one gets
(4 T

transmission-line configuration.
N
C; [LBZ + UJQBZ + (w2 — UJZQ) 51 — [32551} =0 (7)

T

lines, the hybrid fields are expressed by superposing Ti-to- Z
and TM-toy with Hertzian scalar potentialst and¢”, respec-  “~*
tively, where the subscriptdesignates the regions. Fig. 1 showssing (7), the equation to be solved becomes
the cross section of the general configuration. N

The conductors are assumed to be infinitesimally thin and Zci [(@2 — ) SD; + (w? — w2) 51} —o0. @8)
perfectly conducting, and the substrates are assumed to be

low-loss(o; = 0) and nonmagnetic. By applying the continuity_ L ) i _
T@ls equation is converted to a set of linear equations by taking

condition and the boundary condition equations, a dyadIc™ ) i =N _
Green's function can be derived. This function relates tf{8€ inner product of (8) with the eigenfunctiosy as follows:

surface current densities with the tangential electric fields [10]. |M (wQI _ 92) + SK2| C—p325C =0 9)
To illustrate the application of the algorithms, we first need

to be reminded of the most important equations developed \jth

Przybyszewsket al. [9]. For this purpose, let us now consider

i=1

Maxwell's equations in differential form and the constitutive Q2 =dia [%12 ]
relations. It states that K =dia [37]
. . C’:[cl,cQ,...,cn]T
= 6V AB OV NH - _
VA(VAE)=-T22 =225 @ M, :(ui,v,t):/(DtixBfk*)-EL’Z-ds
D D D oL .
V- <v;> -V = ) Sk, = (Sus, vf) :/(E” x Htk) .. -ds.  (10)

If we assume that: 1) all components have the same propagaﬁ\lly)neres represents the cross section of multistrip and multi-

factor i@t 42); 2) a source-free dielectriy - i 0): and dyer transmission lines andl, is a unit vector in the:-direc-
3) e andy: are not function of coordinates, by using the phasgron' . . .

. . . . ) The results are a system of homogeneous linear equations in
representation, equation (2) with steady-state sinusoidal repre. -

N erms of the unknown coefficients. The above system problem
sentation time dependence become ) :
leads to a homogeneous matrix equafidh- X = 0. The accu-

. . racy with which the previous equation can be solved is directly
1 (8D N 82D NN B Beo 3) related to the accuracy with which the zeros of dle(A) can
ep \ 6x2  by? Y T e B be detected.

Many numerical difficulties are encountered in the determi-
where 3 andw are the propagation constant and the angulBgation of the zeros of the characteristic equation because, as has
frequency, respectively. already been shown, such lines can support complex modes.

The electric flux densit{ 3 = 50511@) in each region sat- Hence, the zeros of the determinant of the characteristic ma-
trix must be sought in the complex plane rather than on the real

axis. Moreover, for certain combinations of structure parame-
ters, a zero may be very close to a pole. Numerical techniques

isfies the equation

LD +w?D—*SD =0 (4)  fail to find the zero in such cases. In the search for the complex
solutions of the equatioji] - = = 0, we have applied a general
wherel andS are operators defined as technique known as SVD [11], which is capable of solving ho-
mogeneous matrix equations without introducing solutions as
1 62 1 62 1 poles. The above procedure is based on singular value compo-

L: S:—

ep 622 T ep by? e sition, which is a powerful algorithm for dealing with matrices
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that are either singular or else numerically very close to singular requency (SH2)

[13]. It has been demonstrated that by detecting the minima of (b)

the minimum singular value, instead of the zeros of the systetig. 5. Propagation constants versus frequency for suspended microstrip
; i ine.The dashed lines correspond to the real part of complex roots. (a) Accurate

d?.termmar.]t’ th.e presence of pales an be e“m.mated’ .thus %gﬁution. Parameterdil = h4 = 1.778,h2 = h3 = 0.5, wl = 0.5,

nificantly simplifying the §earch algorithm and increasing thg, — (.0, 4 = 5. All dimensions are in milimeters;,» = c,5 = 20

accuracy of the computations. Moreover, the detected value(lo)f Approximate results. The upper one is obtained considering the two

the minimum itself provides a clear indication for the accuraééﬁbggsgfeguu”gfy”zh"ég';hgor‘t-’;) blagios f“_”i“ggsszg‘f’z‘z Ebee% (;’;edof%roghoe) others
. W0, = 4. — ,—U. y

achieved. _ _ frequency (in gigahertz) 15.003% = 0.000F + 000,—2.367E — 001).
The application of SVD is fundamental in both the approxrequency (in gigahertz) 15.003; = 2.396E — 001, —4.005E — 001),

imate and accurate determination zeros because, by using fi§§ency (in gigahertz) 15.00%; = —2.396E — 001, —4.005E — 001).
technique, we can eliminate the poles and steep gradients in

the resolution of the characteristic equation rapidly and reliabkpward the study of the other configurations, and is proof of the
Solving the above system problem f6%(w), one gets the ap- method’s reliability.

proximate dispersion characteristic constants as a function ofl he simultaneous use of these powerful techniques (SDA and
the number and type of modes of the structure of interest. One¥D) in the root searching of homogeneous matrix equations
the characteristic equation is solved, the electromagnetic fi€@n be considered as numerical procedures to determine the

can be determined. propagation constant of the dominant and higher order modes
for accurate and approximate techniques. These results have
. RESULTS AND CONCLUSIONS been compared with accurate data, which has been obtained by

applying the SDA method together with the SVD technique to

Even though the algorithm developed above is equally valightain the set of modes that appears in finline and microstrip

for any of the configurations belonging to multiconductor angonfigurations. In SDA, fields and currents are first expanded in
multilayer planar transmission lines, we will only give resultserms of some appropriate basis functions. Galerkin’s method is
for the microstrip and finline configurations here because theg®n used to yield a homogeneous system of equations to deter-
structure are currently one of the most used and analyzegine the propagation constants. The repetition of all of these

Furthermore, these results can be considered as a first gtegperties involved in the search for complex solutions is of
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TABLE |
ACCURATE AND APPROXIMATE PROPAGATION CONSTANTS OF 15 15
A SUSPENDED MICROSTRIP CONFIGURATION AS A FUCTION 3
OF FREQUENCY. PARAMETERS AS FIGURE 1047 10

Freq. (GHz) B(mm™") Accurate Approximate Ey(xy) S~ 5 Ey(xy)

1 B, 4.668E-002 0.4670E-01

2 B2 9.387E-002 0.961 0E-01 5

3 B3 1.421E-001 0.1450E+00

4 Ba 1.919E-001 0.1945E+00

5 Bs 0.2573E-00 0.2423E+00

6 Bs 0.2985E-00 0.291 6E+00

7 B~ 0.3563E+00 0.3395E+00

8 Bs 0.4076E+00 0.3873E+00

9 Bs 0.4839E+00 0.4343E+00

10 Bo 0.5523E+00 0.4806E+00

11 Ba1 0. 6254E+00 0.5256E+00

12 B2 0.7018E+00 0.6389E+00

13 Bis 0.7613E+00 0.7389E+00

14 Bia 0.8636E+00 0.8783E+00

15 Bis 0.9479E+00 0.8672E+00 B

16 Bis 1.03382146 9.02365E-01 (b)

17 Brr 1.12042391 9.08953E-01 Fig. 6. Distribution of theE, («, y) component for the first propagation mode
versuse andy for: (a) accurate analysis corresponding with= 0.840411 at

18 Ps 1.26143036 9.62428E-01 freq. = 165G H~z. (b) Approximate method corresponding to the approximate

19 Bis 1.30088726 1.015901498 propagation constart; = 0.842699 at 15 GHz; in this approximation, the set
of basis functions used has be&in= 0.053299 at 1 GHz angB; = 0.23336 at

20 Ba2o 1.39183550 1.069476758 27.5 GHz, Parametergl = 3, h2 = h3 = 0.3175, h4 = 0.0, wl = 0.56,
w2 = 0.0, A = 5. All the above dimensions are in millimeters.cc,.. =
Erz = 10.

utmost importance in the development of this algorithm and,
therefore, precision in the search for the aforementioned solg-y) or longitudinal section magnetic (LSM) (TM modes to
tion will be fundamental in the suitability of the method. y) terms. As the frequency increases, the interaction with the
The first step for checking the performance of the proposéigher order eigenmodes becomes significant and a hybrid char-
approach is to verify that the approximation is correct for thecter becomes pronounced, which obviously is a result of the
structures where we know correct data. Firstly, the fundamenid¢reasing contribution coming from the nearest mode. Taking
mode and higher modes have been found for a bilateral finlimecomplex mode into consideration as a degeneration of TE and
(Fig. 2). Fig. 3 shows the accurate propagation constants fidvl modes, this mode has enough information about the hybrid
the first five modes and the approximate first mode. The fugharacter of modes at high frequency. For this reason, the set of
damental propagation constant mode is obtained with only twforementioned basis solutions is sufficient for our purposes. In
basis functions. the light of the results obtained, it can be said that this new tech-
The second step has been to verify by comparison a secavigue offers the following advantages: First, it is very simple to
configuration, which is suspended microstrip. For suspendad the approximate situation of the complex roots, which is
microstrip (see Fig. 4), the number of basis functions has beemown to be one the most complex procedure involved in ob-
two for the fundamental mode and four for the higher modéaining a complete set given the closeness of the poles and zeros
in the frequencies ranging from 1 to 25 GHz. The propagati¢h4], [15]. This advantage is not the aim of the method itself;
constants considered in Fig. 5(a) and (b) corresponds to acbawever, through this study, we have verified for several con-
rate and approximate data, respectively. In Table |, it is possilfigurations that with two basis functions, i.e., a two-by-two ma-
to verify that the new algorithm gives very good results. Finallytix, the position of that complex mode and its conjugate can be
it is possible to see the relevant correlation between the accureltdained within a very wide-frequency interval. The second ad-
and approximate field configuratidi¥, ) in Fig. 6(a) and (b), vantage is to obtain fast and efficiently a complete set of modes
respectively, for a microstrip line. In order to obtain the abovie each structure. The above results forecast excellent possibil-
approximate configuration, we have used only two basis funities for this algorithm if used in suitable functions.
tions. Furthermore, to understand this good data it is necessary
to consider the spectrum of modes at the cutoff frequency, which REFERENCES
consists of the TEM term (only for a microstip line) and modes (1} r. . collin, Field Theory of Guided Waves New York: McGraw-Hil,
that are purely longitudinal section electric (LSE) (TE modes  1960.
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