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An Innovative Fast Powerful Method for Tackling
Electromagnetic Eigenvalue Problems for

Multistrip Transmission Lines
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Abstract—A full-wave electromagnetic technique is developed
for the rapid and accurate calculation of dispersion characteristics
in multiconductor and multilayer planar transmission lines. The
proposed method is based on the Mrozowski and Przybyszewski
algorithms. This powerful method calculates an approximate value
of propagation constant at a desired frequency based on more ac-
curate computations of the field distribution and propagation con-
stant at a few selected frequency points. Comparison with previ-
ously accurate published data and numerical tests are first per-
formed to confirm the accuracy of our procedure. Numerical re-
sults for several configurations are presented.

Index Terms—Eigenvalue problems, full-wave analysis, planar
transmission lines.

I. INTRODUCTION

DETERMINING the normal modes of propagation of a
guiding structure is known to be of fundamental impor-

tance. Due to the completeness of the set of normal modes [1],
an arbitrary electromagnetic field inside the guiding structure
can be expanded within this set. Moreover, the analysis of
discontinuities between planar transmission lines, such as
finline and microstrip configurations, has received increasing
interest. Rigorous theoretical investigations of discontinuities
by modal analysis have been reported by several authors
(e.g., [2]–[4]) and a transverse resonance method based on
an impedance matrix formulation was reported (e.g., [5]);
determining high-order modes is not needed for this approach.
The first approach method of analysis depends on the modal
expansion concept. It is an application of the method of
moments, in which both the basis and testing functions are
the electromagnetic fields of the normal modes of propagation
at both sides of the discontinuity. The main problem in this
technique is the accurate determination of an approximately
complete set of modes. Usually the weight of the mode in
a field expansion series becomes smaller as the mode order
goes higher so that determining of the first, say,, modes
is the actual need [6]. Therefore, one of the basic aims of
computational electromagnetic is the calculation of dispersion
characteristics of planar transmission lines. In fact, the design of
passive and active components, which are of utmost importance
in the realization of integral microwave circuits, wide-band
characterization of any one of the configurations belonging
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to the generalized guiding structure, e.g., microstrip, finline,
coplanar waveguide (CPW), etc, requires repetitive numerical
solutions of a boundary value problem at successive frequency
points. This is necessary for the calculation of both the fun-
damental and higher modes. Moreover, the study of higher
modes is closely related to problems of discontinuity. This, in
turn, requires an adequate selection of modes to obtain rapid
convergence, avoiding overflow problems and minimizing
CPU time. With a high computational cost for each solution, a
lengthy overall time is needed to complete the computation for
all points of interest. Several authors have recently suggested
different approaches to overcome this problem [7]–[9]. In this
paper, we have implemented a new technique based on the
work recently developed by Przybyszewskiet al. [9], which
has been successful in dispersion analysis of waveguides.
The method calculates an approximate value of propagation
constant at a desired frequency based on more accurate com-
putations of the field distribution and propagation constant at
a few selected frequency points. The principal idea of the new
algorithms proposed by Mrozowski [7] and Przybyszewskiet
al. [9] is to calculate a frequency independent optimal set of
eigenfunctions, which satisfy all boundary conditions in large
bandwidths. Although this stage of the process is performed
only once, the choice and efficiency of the numerical technique
used is of considerable importance as it may also be useful
in the second stage of the process, depending on the type of
method developed. The second stage involves expressing the
fields at any frequency as a superposition of a small number
of suitable eigenfunctions obtained in the first stage of the
process. Finally, the method of moments can be used to find
expansion coefficients. In the frequency domain, it involves
solving a small system of linear equations. In this work, both
the spectral-domain approach (SDA) [10] method and the
singular value decomposition (SVD) [11] technique have
been implemented to obtain an accurate set of modes. The
simultaneous use of these two techniques (SDA and SVD) [12]
offers the possibility of finding all the eigenmodes of any type
of multiconductor and multilayer planar transmission lines.
Likewise, these techniques are used to find the approximate
values applying the new fast method. The proposed technique
has been incorporated into the analysis of microstrip transmis-
sion lines and finline waveguides with great success.

II. GENERAL FORMULATION

In order to carry out the fast efficient eigenmodes dispersion
analysis for multilayer and multiconductor planar transmission
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Fig. 1. Cross-sectional view of general multilayer and multiconductor
transmission-line configuration.

lines, the hybrid fields are expressed by superposing TE-to-
and TM-to- with Hertzian scalar potentials and , respec-
tively, where the subscriptdesignates the regions. Fig. 1 shows
the cross section of the general configuration.

The conductors are assumed to be infinitesimally thin and
perfectly conducting, and the substrates are assumed to be
low-loss and nonmagnetic. By applying the continuity
condition and the boundary condition equations, a dyadic
Green’s function can be derived. This function relates the
surface current densities with the tangential electric fields [10].
To illustrate the application of the algorithms, we first need
to be reminded of the most important equations developed by
Przybyszewskiet al. [9]. For this purpose, let us now consider
Maxwell’s equations in differential form and the constitutive
relations. It states that

(1)

(2)

If we assume that: 1) all components have the same propagation
factor ; 2) a source-free dielectric ; and
3) and are not function of coordinates, by using the phasor
representation, equation (2) with steady-state sinusoidal repre-
sentation time dependence become

(3)

where and are the propagation constant and the angular
frequency, respectively.

The electric flux density in each region sat-
isfies the equation

(4)

where and are operators defined as

In this way, once discrete points have been obtained so that
at each , , and as a function of , and , ,
each satisfies the following equation:

(5)

At other frequencies, to approach the solution using a superpo-
sition process

(6)

where is a function of and . Substituting (6) into (4) and
simultaneously adding and subtracting , one gets

(7)

using (7), the equation to be solved becomes

(8)

This equation is converted to a set of linear equations by taking
the inner product of (8) with the eigenfunctions as follows:

(9)

with

(10)

Where represents the cross section of multistrip and multi-
layer transmission lines and is a unit vector in the -direc-
tion.

The results are a system of homogeneous linear equations in
terms of the unknown coefficients. The above system problem
leads to a homogeneous matrix equation . The accu-
racy with which the previous equation can be solved is directly
related to the accuracy with which the zeros of the can
be detected.

Many numerical difficulties are encountered in the determi-
nation of the zeros of the characteristic equation because, as has
already been shown, such lines can support complex modes.
Hence, the zeros of the determinant of the characteristic ma-
trix must be sought in the complex plane rather than on the real
axis. Moreover, for certain combinations of structure parame-
ters, a zero may be very close to a pole. Numerical techniques
fail to find the zero in such cases. In the search for the complex
solutions of the equation , we have applied a general
technique known as SVD [11], which is capable of solving ho-
mogeneous matrix equations without introducing solutions as
poles. The above procedure is based on singular value compo-
sition, which is a powerful algorithm for dealing with matrices
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Fig. 2. Generalized finline.

Fig. 3. Normalized propagation constants of the first five modes in a
bilateral finline as a function of frequency. Parameters:h1 = h4 = 1:0795,
h2 = h3 = 0:1905, w = w = 0:371, s = s = 0:635, A = 1:27.
All the above dimensions are in millimeters." = " = 10.
The asterisk line is the approximate solution for the dominant mode
obtained considering two basis functions: frequency (in gigahertz): 24.00,
� (3:9440261E � 001; 0:00000E + 000), frequency (in gigahertz) : 50.00,
(0:0000000E+ 000;�3:788118220).

that are either singular or else numerically very close to singular
[13]. It has been demonstrated that by detecting the minima of
the minimum singular value, instead of the zeros of the system
determinant, the presence of poles can be eliminated, thus sig-
nificantly simplifying the search algorithm and increasing the
accuracy of the computations. Moreover, the detected value of
the minimum itself provides a clear indication for the accuracy
achieved.

The application of SVD is fundamental in both the approx-
imate and accurate determination zeros because, by using this
technique, we can eliminate the poles and steep gradients in
the resolution of the characteristic equation rapidly and reliably.
Solving the above system problem for , one gets the ap-
proximate dispersion characteristic constants as a function of
the number and type of modes of the structure of interest. Once
the characteristic equation is solved, the electromagnetic field
can be determined.

III. RESULTS AND CONCLUSIONS

Even though the algorithm developed above is equally valid
for any of the configurations belonging to multiconductor and
multilayer planar transmission lines, we will only give results
for the microstrip and finline configurations here because these
structure are currently one of the most used and analyzed.
Furthermore, these results can be considered as a first step

Fig. 4. Generalized microstrip.

(a)

(b)

Fig. 5. Propagation constants versus frequency for suspended microstrip
line.The dashed lines correspond to the real part of complex roots. (a) Accurate
solution. Parameters:h1 = h4 = 1:778, h2 = h3 = 0:5, w1 = 0:5,
w2 = 0:0, A = 5. All dimensions are in millimeters." = " = 20.
(b) Approximate results. The upper one is obtained considering the two
first basis functions, while four basis functions has been used for the others
curves: frequency (in gigahertz) 1.00(� = 4:6682026E � 002;�0:0000),
frequency (in gigahertz) 15.00(� = 0:000E + 000;�2:367E � 001),
frequency (in gigahertz) 15.00(� = 2:396E � 001;�4:005E � 001),
frequency (in gigahertz) 15.00(� = �2:396E� 001;�4:005E � 001).

toward the study of the other configurations, and is proof of the
method’s reliability.

The simultaneous use of these powerful techniques (SDA and
SVD) in the root searching of homogeneous matrix equations
can be considered as numerical procedures to determine the
propagation constant of the dominant and higher order modes
for accurate and approximate techniques. These results have
been compared with accurate data, which has been obtained by
applying the SDA method together with the SVD technique to
obtain the set of modes that appears in finline and microstrip
configurations. In SDA, fields and currents are first expanded in
terms of some appropriate basis functions. Galerkin’s method is
then used to yield a homogeneous system of equations to deter-
mine the propagation constants. The repetition of all of these
properties involved in the search for complex solutions is of
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TABLE I
ACCURATE AND APPROXIMATE PROPAGATION CONSTANTS OF

A SUSPENDEDMICROSTRIPCONFIGURATION AS A FUCTION

OF FREQUENCY. PARAMETERS ASFIGURE

utmost importance in the development of this algorithm and,
therefore, precision in the search for the aforementioned solu-
tion will be fundamental in the suitability of the method.

The first step for checking the performance of the proposed
approach is to verify that the approximation is correct for the
structures where we know correct data. Firstly, the fundamental
mode and higher modes have been found for a bilateral finline
(Fig. 2). Fig. 3 shows the accurate propagation constants for
the first five modes and the approximate first mode. The fun-
damental propagation constant mode is obtained with only two
basis functions.

The second step has been to verify by comparison a second
configuration, which is suspended microstrip. For suspended
microstrip (see Fig. 4), the number of basis functions has been
two for the fundamental mode and four for the higher modes
in the frequencies ranging from 1 to 25 GHz. The propagation
constants considered in Fig. 5(a) and (b) corresponds to accu-
rate and approximate data, respectively. In Table I, it is possible
to verify that the new algorithm gives very good results. Finally,
it is possible to see the relevant correlation between the accurate
and approximate field configuration in Fig. 6(a) and (b),
respectively, for a microstrip line. In order to obtain the above
approximate configuration, we have used only two basis func-
tions. Furthermore, to understand this good data it is necessary
to consider the spectrum of modes at the cutoff frequency, which
consists of the TEM term (only for a microstip line) and modes
that are purely longitudinal section electric (LSE) (TE modes

(a)

(b)

Fig. 6. Distribution of theE (x; y) component for the first propagation mode
versusx andy for: (a) accurate analysis corresponding with� = 0:840411 at
freq: = 15GHz. (b) Approximate method corresponding to the approximate
propagation constant� = 0:842699 at 15 GHz; in this approximation, the set
of basis functions used has been� = 0:053299at 1 GHz and� = 0:23336at
27.5 GHz, Parameters:h1 = 3, h2 = h3 = 0:3175, h4 = 0:0, w1 = 0:56,
w2 = 0:0, A = 5. All the above dimensions are in millimeters." " =
" = 10.

to ) or longitudinal section magnetic (LSM) (TM modes to
) terms. As the frequency increases, the interaction with the

higher order eigenmodes becomes significant and a hybrid char-
acter becomes pronounced, which obviously is a result of the
increasing contribution coming from the nearest mode. Taking
a complex mode into consideration as a degeneration of TE and
TM modes, this mode has enough information about the hybrid
character of modes at high frequency. For this reason, the set of
aforementioned basis solutions is sufficient for our purposes. In
the light of the results obtained, it can be said that this new tech-
nique offers the following advantages: First, it is very simple to
find the approximate situation of the complex roots, which is
known to be one the most complex procedure involved in ob-
taining a complete set given the closeness of the poles and zeros
[14], [15]. This advantage is not the aim of the method itself;
however, through this study, we have verified for several con-
figurations that with two basis functions, i.e., a two-by-two ma-
trix, the position of that complex mode and its conjugate can be
obtained within a very wide-frequency interval. The second ad-
vantage is to obtain fast and efficiently a complete set of modes
in each structure. The above results forecast excellent possibil-
ities for this algorithm if used in suitable functions.
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